University of **Salford** MANCHESTER

Acoustic Vehicle Alerting System (AVAS) for Detectability of Escooters

Dr Antonio J Torija Martinez

Acoustics Research Centre (University of Salford)

Research Team

- Antonio J Torija Martinez (co-lead)
- Andrew Elliott (co-lead)
- Lara Harris
- Zuzanna Podwinska
- Duncan Williams
- Rory Nicholls
- Connor Welham
- Bernard Steer

AVAS: Why is it needed?

- Audible detection to ensure safety of both rider and pedestrians
 - Evidence suggest AVAS is needed to avoid potential collusions with pedestrians.
- Especially sensitive groups:
 - Blind or partially sighted people.
 - Hearing impaired people.
 - Are AVAS the solution?

University of

Salford

MANCHESTER

Salford

Acoustics

Technical Challenges

Salford

- Signal generation: PWL, frequency range, frequency content (tones), directivity.
 - Continuous vs. event-based acoustic signal; signal as a function of speed.
- Constraints: Integration with e-scooter hardware and software

Regulatory Challenges

Salford

Acoustics

- AVAS regulation for transport vehicles. Optimised for e-scooters?
 - UNECE 138.01 (2017) Europe
 - FMVSS No. 141 (2016) US

https://doi.org/10.1121/AT.	United States		
Speed range (forward motion)	Up to 20 km/h (±1 km/h)	Up to 30 km/h (+2km/h)	
Reverse	6 km/h (±2 km/h)	0 km/h (stationary)	
Minimum third-octave levels for nonadjacent bands	Mandatory	Mandatory	
Frequency range	160 Hz to 5,000 Hz	4 Nonadjacent one- 2 Nonadjacent	
	At least 2 nonadjacent 1/3 bands (at least one below/within 1.6kHz)	third octave bandsone-third octavespanning no fewerbands from 315 Hzthan 9 bands fromto 3,150 Hz315 Hz to 5,000 Hz	
Sound while vehicle is stationary	Not mandatory	Mandatory	
Pitch shifting	Mandatory	Not mandatory	

Regulatory Challenges

University of Salford

Salford Acoustics

One-Third Octave- Band Center Frequency (Hz)	Minimum A-Weighted SPL (dB)	A-Weighted Band Sum (dB)	Example of Measured Alert Signal
315	47		47
400	47		47
500	47		55*
630	47		46
800†	47†		46†
1,000	47	57	46
1,250	47		55*
1,600	47		46
2,000	47		45
2,500	47		45
3,150	47		44

https://doi.org/10.1121/AT.2020.16.4.20

Other Challenges

- University of Salford Acoustics
- Balance between vehicle awareness and annoyance/preference.
- Noticeability as a function of ambient sound
- How can we make the sounds noticeable:
 - Level/frequency shifting
 - Roughness
 - Pulses (amplitude modulation)
 - Tonality patterns.
- Questions:
 - How to increase noticeability without compromising community annoyance?
 - How to avoid disharmonic modulations (due to different types of AVAS in operation)?

This research (feasibility study) has been funded by the University of Salford's HEIF discretionary fund, and by an e-scooter manufacturer.

Results will be reported after July 2021.

Questions?

Dr Antonio J Torija Martinez

@ajtorija